选用“交-直-交”结构的低压变频器,其内部主电路由整流和逆变两大部分组成,如图1所示。从R、S、T端输入的三相沟通电,经三相整流桥(由二极管D1~D6构成)整流成直流电,电压为UD。电容器C1和C2是滤波电容器。6个IGBT管(绝缘栅双极性晶体管)V1~V6构成三相逆变桥,把直流电逆变成频率和电压恣意可调的三相沟通电。
图1中,滤波电容器C1和C2两头各并联了一个电阻,是为了使两只电容器上的电压根本持平,避免电容器在工作中损坏(现在,因为技能的前进,低压(380V)变频器的电解电容大多数能够不需求串联使用了)。在整流桥和滤波电容器之间接有一个电阻R和一对接触器触点KM,其缘由是:变频器刚接通电源时,滤波电容器上的电压为0V,而电源电压为380V时的整流电压峰值是537V,这样在接通电源的瞬间将有很大的充电冲击电流,有或许损坏整流二极管;别的,端电压为0的滤波电容器会使整流电压瞬间下降至0V,形成对电源网络的搅扰。为了处理上述问题,在整流桥和滤波电容器之间接入一个限流电阻R,可将滤波电容器的充电电流约束在一个答应范围内。可是,假如限流电阻R一直接在电路内,其电压降将影响变频器的输出电压,也会下降变频器的电能转化功率,因而,滤波电容器充电结束后,由接触器KM将限流电阻R短接,使之退出运转。
各种变频器主电路的对外衔接端子大致相同,如图2所示。其间,R、S、T是变频器的电源端子,接至沟通三相电源;U、V、W为变频器的输出端子,接至电动机;P+是整流桥输出的+端,出厂时P+端与P端之间用一块截面积足够大的铜片短接,当需求接入直流电抗器DL时,拆去铜片,将DL接在P+和P之间;P、N是滤波后直流电路的+、-端子,能够衔接制动单元和制动电阻;PE是接地端子。
电动机在制动(发电)状况时,变频器从电动机吸收的能量都会保存在变频器直流环节的电解电容中,并导致变频器中的直流母线电压升高。假如变频器装备制动单元和制动电阻(这两种元件归于选配件),变频器就能够经过短时间接通电阻,使再生电能以热方法耗费掉,称做能耗制动。当然,采纳再生能量回馈计划也可处理变频调速体系的再生能量问题,并可到达节省能源的意图。而规范通用PWM变频器没有规划使再生能量反应到三相电源的功用。假如将多台变频器的直流环节经过共用直流母线互连,则一台或多台电动机发生的再生能量就能够被其他电动机以电动的方法耗费吸收。或许,在直流母线上设置一组必定容量的制动单元和制动电阻,用以吸收不能被电动状况电动机吸收的再生能量。若共用直流母线与能量回馈单元组合,就能够将直流母线上的剩余能量直接反应到电网中来,然后进步体系的节能作用。综上所述,在具有多台电动机的变频调速体系中,选用共用直流母线计划,装备一组制动单元、制动电阻和能量回馈单元,是一种进步体系功能并节省出资的较好计划。
各变频器的电源输入端并联于同一沟通母线上,并确保各变频器的输入端电源相位共同。图3中,断路器QF是每台变频器的进线保护设备。LR是进线电抗器,当多台变频器在同一环境中运转时,相邻变频器会相互搅扰,为了消除或减轻这种搅扰,一起为了进步变频器输入侧的功率因数,接入LR是有必要的。
KM是变频器的直流环节与共用直流母线衔接的操控开关。FU是半导体快速熔断器,其额外电压可选700V,额外电流有必要考虑驱动电动机在电动或制动时的最大电流,一般情况下,能够挑选额外负载电流的125%。
回馈到公共直流母线上的再生能量,在不能彻底被吸收的情况下,可经过共用的制动电阻耗费未被吸收的再生能量。若选用能量回馈设备,则这部分再生能量将被回馈到电网中,然后进步节能的功率。
各变频器依据操控单元的指令,经过KM将其直流环节并联到共用直流母线上,或是在变频器毛病后快速地与共用直流母线断开。
相关产品